Fil:Shell-diag-1.png

Fra testwiki
Hopp til navigering Hopp til søk
Opprinnelig fil (1 255 × 605 piksler, filstørrelse: 33 KB, MIME-type: image/png)

Denne filen er fra Wikimedia Commons og kan brukes av andre prosjekter. Beskrivelsen fra filbeskrivelsessida vises nedenfor.

En vektorversjon av dette bildet (SVG) er tilgjengelig.
Det bør brukes i stedet for punktgrafikkbildet når det er fordelaktig.

File:Shell-diag-1.png → File:Shell-diag-1.svg

For mer informasjon om vektorgrafikk les Commons transition to SVG.
Se også information about MediaWiki's support of SVG images.

På andre språk
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  မြန်မာဘာသာ  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  +/−
Nytt SVG-bilde

Beskrivelse

Beskrivelse A diagram illustrating the derivation of Newton's shell theorem. Shown is a thin shell with a test mass outside the shell ().
Dato
Kilde Eget verk
Opphavsperson Jim Wisniewski

Lisensiering

Jeg, rettighetsinnehaver av dette arbeidet, publiserer det herved under følgende lisens:
w:no:Creative Commons
navngivelse del på samme vilkår
Denne filen er lisensiert under lisensen Creative Commons Navngivelse-DelPåSammeVilkår 2.5 Generisk
Du står fritt:
  • til å dele – til å kopiere, distribuere og overføre verket
  • til å blande – til å endre verket
Under de følgende betingelsene:
  • navngivelse – Du må kreditere verket på passende vis, lenke til lisensen og indikere hvorvidt det har blitt gjort endringer. Du kan gjøre det på enhver rimelig måte, men ikke på en måte som antyder at lisensgiveren støtter deg eller din bruk av verket.
  • del på samme vilkår – Dersom du remikser, omarbeider eller på annen måte bygger på dette verket, må du kun distribuere resultatet under den samme eller en samsvarende lisens som denne.

Source

This image and the others in the same series (2, 3, 4) were generated from the MetaPost code presented below. The code is released under the same license as the images themselves.

% shell-diag.mp
% A diagram illustrating the derivation of Newton's shell theorem.  To be
% processed with MetaPost.

color bandshade, fillshade;
bandshade = 0.7 [blue, white];
fillshade = 0.9 white;

numeric dotsize, deg;
dotsize = 5 bp;
deg = length( fullcircle )/360;

freelabeloffset := 3/4 freelabeloffset;
labeloffset := 2 labeloffset;

def dot( expr P ) =
  fill fullcircle scaled dotsize shifted P withcolor black;
enddef;

def draw_circle( expr R, stroke ) =
  save p;
  pen p;
  p = currentpen;
  pickup p scaled stroke;
  draw fullcircle scaled 2R;
  pickup p;
enddef;

vardef anglebetween( expr a, b, rad, str ) =
  save endofa, endofb, common, curve, where;
  pair endofa, endofb, common;
  path curve;
  numeric where;
  endofa = point length( a ) of a;
  endofb = point length( b ) of b;
  if round point 0 of a = round point 0 of b:
    common = point 0 of a;
  else:
    common = a intersectionpoint b;
  fi;
  where = turningnumber( common--endofa--endofb--cycle );
  curve = (unitvector( endofa - common ){(endofa - common) rotated (90 * where)} ..
           unitvector( endofb - common )) scaled rad shifted common;
  draw thefreelabel( str, point 1/2 of curve, common ) withcolor black;
  curve
enddef;

def draw_angle( expr a, b, rad, str ) =
  begingroup
    save p;
    pen p;
    p = currentpen;
    pickup p scaled 1/2;
    draw anglebetween( a, b, rad, str );
    pickup p;
  endgroup
enddef;

def label_line( expr a, b, disp, str ) =
  begingroup
  save mid, opp;
  pair mid, opp;
  mid = 1/2 [a, b];
  opp = -disp rotated (angle( b - a ) - 90) shifted mid;
  draw thefreelabel( str, mid, opp );
  draw a -- b;
  endgroup
enddef;

def draw_thinshell( expr R, r, theta, dtheta, thetarad, phirad ) =
  begingroup
    save M, m;
    pair M, m;
    M = (0, 0);
    m = (r, 0);
    
    save circ;
    path circ;
    circ = fullcircle scaled 2R;
    
    save thetapt, dthetapt;
    pair thetapt, dthetapt;
    thetapt   = point (theta * deg) of circ;
    dthetapt  = point ((theta + dtheta) * deg) of circ;
    
    save upper, lower, band;
    path upper, lower, band;
    upper = subpath (0, 4) of circ;
    lower = subpath (4, 8) of circ;
    band = buildcycle( upper, (xpart thetapt,  R) -- (xpart thetapt,  -R),
                       lower, (xpart dthetapt, R) -- (xpart dthetapt, -R) );
    
    % draw figures
    save p;
    pen p;
    p = currentpen;
    pickup p scaled 1/2;
    fill band withcolor bandshade;
    draw band;
    pickup p;
    
    save near, far;
    pair near, far;
    if theta < 90:
      near = 3/4[ulcorner band, llcorner band];
      far  = right shifted near;
    else:
      near = 3/4[urcorner band, lrcorner band];
      far  = left shifted near;
    fi;
    draw thefreelabel( btex $dM$ etex, near, far );
    
    dot( M );
    %label.llft( btex $M$ etex, M );
    
    dot( m );
    label.lrt( btex $m$ etex, m );
    
    draw M -- thetapt;
    label_line( M, m, right, btex $r$ etex );
    label_line( m, thetapt, right, btex $s$ etex );
    if R <> r:
      label_line( M, dthetapt, left, btex $R$ etex );
    else:
      draw M -- dthetapt;
    fi;
    
    draw_angle( m -- M, m -- thetapt, phirad, btex $\phi$ etex );
    draw_angle( M -- m, M -- thetapt, thetarad, btex $\theta$ etex );
    draw_angle( M -- thetapt, M -- dthetapt, R, btex $d\theta$ etex );
  endgroup
enddef;

def draw_thickshell( expr Ra, Rb, r ) =
  begingroup
    save m;
    pair m;
    m = (r, 0);
    
    fill fullcircle scaled 2Rb withcolor fillshade;
    fill fullcircle scaled 2r  withcolor bandshade;
    unfill fullcircle scaled 2Ra;

    dot( origin );
    dot( m );
    label.lrt( btex $m$ etex, m );
    label_line( origin, m, right, btex $r$ etex );
    
    draw_circle( Rb, 2 );
    if Ra > 0:
      draw_circle( Ra, 2 );
      label_line( origin, dir( 100 ) scaled Rb, left,  btex $R_b$ etex );
      label_line( origin, dir( 80 )  scaled Ra, right, btex $R_a$ etex );
    else:
      label_line( origin, dir( 90 )  scaled Rb, left,  btex $R_b$ etex );
    fi;
  endgroup
enddef;

% Thin shell, r > R
beginfig(1)
  numeric R;
  R = 1 in;
  draw_thinshell( R, 3R, 50, 15, 1/4 in, 3/4 in );
  draw_circle( R, 2 );
endfig;

% Thin shell, r < R
beginfig(2)
  numeric R;
  R = 1 in;
  draw_thinshell( R, 0.7R, 125, 15, 1/8 in, 1/3 in );
  draw_circle( R, 2 );
endfig;

% Thick shell
beginfig(3)
  numeric Ra, Rb, r;
  Ra = 0.8 in;
  Rb = 1.3 in;
  r = 1 in;

  draw_thickshell( Ra, Rb, r );
endfig;

% Solid sphere
beginfig(4)
  numeric Ra, Rb, r;
  Ra = 0;
  Rb = 1.3 in;
  r = 1 in;
  
  draw_thickshell( Ra, Rb, r );
endfig;

end

Bildetekster

Legg til en kort forklaring på hva filen representerer

Elementer som er med i denne fila

motiv

Filhistorikk

Klikk på et tidspunkt for å vise filen slik den var på det tidspunktet.

Dato/klokkeslettMiniatyrbildeDimensjonerBrukerKommentar
nåværende30. sep. 2006 kl. 01:50Miniatyrbilde av versjonen fra 30. sep. 2006 kl. 01:501 255 × 605 (33 KB)wikimediacommons>Xaonon== Summary == {{Information |Description = A diagram illustrating the derivation of Newton's shell theorem. Shown is a thin shell with a test mass outside the shell (<math>r > R</math>). Created with w:MetaPost. |Source = Own work. |Date = 2006-09-2

Den følgende siden bruker denne filen: